Code No.: 12322 AS N

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. II-Semester Advanced Supplementary Examinations, September-2023 Quantum Mechanics and Materials Science

(Common to EEE & ECE)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	$Part-A (10 \times 2 = 20 Marks)$				
-	Stem of the question	M	L	CO	PO
1.	Why are X-rays used for crystal diffraction studies?	2	1	1	1,2,1
2.	What are the effects of crystal defects?	2	2	1	1,2,1
3.	Calculate the de-Broglie wave length associated with 0.1keV proton. Given Mass of the proton is $1.67 \times 10^{-27} \text{kg}$ and $h=6.624 \times 10^{-34} \text{J}_{-8}$	2	3	2	1,2,12
4.	How does a quantum computer different from a classical computer? Write any two differences between them.	2	2	2	1,2,12
5.	Write down limitations of classical free electron theory.	2	1	3	1,2,12
6.	Mention the significance of law of mass-action in intrinsic and extrinsic semiconductors.	2	2	3	1,2,12
7.	What are the three important requisites for laser action to takes place?	2	1	4	1,2,12
8.	A step index fibre with a core refractive index of 1.5 and relative refractive index of 1%. Estimate the numerical aperture and acceptance angle of fibre.	2	3	4	1,2,12
9.	Show that super conductors exhibit perfect dia magnetism (Meissner effect)	2	2	5	1,2,12
10.	Distinguish between polar and non-polar dielectric materials.	2	1	5	1,2,12
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	What is Schottky defect? Evaluate the expression for equilibrium concentration of Schottky defects at a temperature T.	5	2	1	1,2,12
	A beam of mono-energetic neutrons corresponding to 2795.	3	3	1	1,2,12
2. a)	Describe the experimental verification of matter	5	2	2	1,2,12
b)	Compute the energy difference between the ground state	3 3	3	2	1,2,12

Code No.: 12322 AS N

			Cin.		
3. a)	Distinguish between intrinsic and extrinsic semiconductor? Derive expression for electrons concentration of an intrinsic semiconductor.	5	3	3	1,2,12
		3	3	3	1,2,12
	What is acceptance angle? Derive the expression for Numerical aperture of an optical fibre.	5	3	4	1,2,12
b)	What are the advantages of optical fibres over co-axial cables?	3	2	4	1,2,12
15. a)	List various types of polarizabilities that occur in a dielectric. Derive the expression for electronic polarizability and show that it is independent of	5	2	5	1,2,12
	temperature.	3	3	5	1,2,12
b)	Distinguish between Type –I and Type –II Super conductors.	1	2	1	1,2,12
16. a)	Describe Powder Method of XRD to evaluate inter planar spacing of the crystal.	4	2		
b)	Arrive at the Schrödinger time independent wave equation for a free particle.	4	2	2	1,2,12
17.	Answer any two of the following:				
a)	The Hell voltage and Hall coefficient for p-type	4	2	3	1,2,12
b)	tion and working of Ruby laser with its energy level	4	1	4	1,2,1
c)	hard and soft magnetic materials on the basis of			5	1,2,1

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

1	Blooms Taxonomy Level – 1	20%
1)	Blooms Taxonomy Level – 2	40%
11)	Blooms Taxonomy Level – 3 & 4	40%
iii)	Blooms Taxonomy Level 5 ce 1	
